import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.conv1=Conv2d(3,32,5,padding=2)
self.maxpool1=MaxPool2d(2) #2*2里面谁最大
self.conv2=Conv2d(32,32,5,padding=2)
self.maxpool2=MaxPool2d(2) #2*2里面谁最大
self.conv3=Conv2d(32,64,5,padding=2)
self.maxpool3=MaxPool2d(2) #2*2里面谁最大
self.flatten = Flatten()
self.liner1 = Linear(1024,64)
self.liner2 = Linear(64,10)
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2), # 2*2里面谁最大
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2), # 2*2里面谁最大
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2), # 2*2里面谁最大
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self,x):
x=self.conv1(x)
x =self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x= self.flatten(x)
x= self.liner1(x)
x=self.liner2(x)
return x
tudui = Tudui()
input = torch.ones(64,3,32,32)
output = tudui(input)
#
# print(output)
# print(output.shape)
#
# print(tudui)
writer = SummaryWriter("圣经网络")
writer.add_graph(tudui,input)
writer.close() #cmd输入 tensorboard --logdir=logs logs改成绝对路径
更多【机器学习-自己编写神经网络】相关视频教程:www.yxfzedu.com