【HarmonyOS-京麒CTF2024-HarmonyOS移动端Native层逆向】此文章归类为:HarmonyOS。
找到的工具:HapViewer 发行版 - Gitee.com
鸿蒙逆向目前没有完整的逆向工具所以手动逆向:
先将.hap文件后缀更改为.zip解压后就可以看见.hap的文件结构了!
.abc文件类似于安卓的.dex文件,直接用txt文本打开发现并没有进行加密或者混淆源码直接在里面!
发现需要用utf-8可以解决部分中文乱码!
提取出主要的代码:
constructor(parent, params, __localStorage, elmtId = -1) { super(parent, __localStorage, elmtId); this.context = getContext(this); this.__message = new ObservedPropertySimplePU('请输入flag', this, "message"); this.__button_name = new ObservedPropertySimplePU('提交', this, "button_name"); this.__flag = new ObservedPropertySimplePU('', this, "flag"); this.__result = new ObservedPropertySimplePU('', this, "result"); this.dialogController = new CustomDialogController({ builder: () => { let jsDialog = new CustomDialogExample(this, { textValue: this.__result, }); jsDialog.setController(this.dialogController); ViewPU.create(jsDialog); } }, this); this.setInitiallyProvidedValue(params); }
这段代码初始化了一个flag提交框!!!
this.observeComponentCreation((elmtId, isInitialRender) => { ViewStackProcessor.StartGetAccessRecordingFor(elmtId); Button.createWithLabel(this.button_name); Button.onClick(() => { this.context.resourceManager.getRawFileContent("bin").then((value) => { var c = testNapi.check(this.flag, value); if ((c & 0b100) === 0b100) { this.result = '系统环境异常'; } else if ((c & 0b10) === 0b10) { this.result = 'flag格式错误'; } else if ((c & 0b1) === 0b1) { this.result = 'flag错误或系统环境异常'; } else { this.result = 'flag正确'; } this.dialogController.open(); }); }); if (!isInitialRender) { Button.pop(); } ViewStackProcessor.StopGetAccessRecording(); });
在txt里面找到了判断flag的按钮!!var c = testNapi.check(this.flag, value);
发现这里就有check函数可以判断flag!
发现testNapi那么就可以对标安卓的Native层方法了:16.7:NAPI 加载原理(上) | 《ArkUI实战》
testNapi方法是写在libentry.so文件里!
拖入ida直接开始查找!
先了解鸿蒙的Native层方法注册流程(鸿蒙用的是魔改后的Node.js的原生库ffi-napi):
注册方法:RegisterEntryModule
-》napi_module_register
-》要注册方法的结构体napi_module
typedef struct napi_module { int nm_version; unsigned int nm_flags; void* nm_filename; napi_addon_register_func nm_register_func; void* nm_modname; void* nm_priv; void* reserved[4]; } napi_module;
发现这个check方法是在这里!
找到check方法!!
这里有很多api特别重要先提前了解一波:
这些api的来源都是js的Node-API,华为用ArkTS又封装了一遍:
问chatgpt就可以知道他们的作用:
napi_get_cb_info napi_get_value_string_utf8 napi_get_typedarray_info napi_get_reference_value napi_call_function napi_create_int32 napi_coerce_to_bool
在之前找到的源码区:
aboutToAppear() { // 注册 testNapi 处理程序,针对不同的 batteryInfo 属性进行比较和返回结果 // 电池剩余电量差值判断 testNapi.register(0, (a) => { var t = batteryInfo.batterySOC - a; var f; if (t > 0) f = 1; else if (t == 0) f = 0; else f = -1; return f === 0; }); ... // 直接返回电池温度 testNapi.register(262, () => { return batteryInfo.batteryTemperature; }); // 直接返回电池是否存在 testNapi.register(263, () => { return batteryInfo.isBatteryPresent; }); // 直接返回电池容量等级 testNapi.register(264, () => { return batteryInfo.batteryCapacityLevel; }); }
这些代码就是在ArkTS源码区注册的回调函数,Native层的napi_call_function函数可以通过序号调用这些ArkTs层的代码!
先进行部分分析,最后再汇总分析所有伪代码!
Native层的获取回调函数的函数:
// 通过bin_i的值获取注册在TS的代码,将注册的方法存放于reg_method_0 napi_get_reference_value(env, *(v29 + 40), ®_method_0); // 通过bin_i_or_100的值获取注册在TS的代码,将函数存放在reg_method_1 napi_get_reference_value(env, *(v36 + 40), ®_method_1);
下面分析一下逻辑伪代码:
bin[i]
获取reg_method_0地址和reg_method_1地址的查找代码bin[i+1]
获取VM执行流程bin[i+1]
== 0bin[i+1]
== 1bin[i+1]
== 2bin[i+1]
的值分析不同控制流所执行的逻辑reg_method_1方法在被找到的那一刻就被执行了,返回值是method_1_ret:
bin[i+1]
== 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | else if ( !keyvalue ) // keyvalue==0,method_1_ret被转为int32,传入一个参数 { //VM整体操作流程序号加4 v40 = targetidx + 4; //获取bin[i+3]作为整数 napi_create_int32(env, *(bin + targetidx + 3), &int_3_arg); //调用reg_method_0(bin[i+3])得到返回值——》methodfun_0_ret napi_call_function(env, this ,reg_method_0,1,&int_3_arg, &methodfun_0_ret); //将reg_method_1函数的返回值作为switch_case_key napi_get_value_int32(env, method_1_ret, &method_1_ret_bool); // 转为int32 LOBYTE(switch_case_key) = method_1_ret_bool; } 1. VM整体操作流程序号加4 2. 获取bin[i+3]作为整数 3. 调用reg_method_0(bin[i+3])得到返回值——》methodfun_0_ret 4. 将reg_method_1函数的返回值作为switch_case_key 注:switch_case_key用来加密 |
bin[i+1]
== 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | v40 = targetidx + 3; //VM整体操作流程序号加上3 // keyvalue == 1,method_1_ret返回值被转为utf8,传入一个参数 if ( keyvalue == 1 ) { //获取bin[i+2]的值作为size size = *(bin + targetidx + 2); //获取bin + v40中的字符串,其实就是bin[i+3] napi_create_string_utf8(env, bin + v40, size, &int_3_arg); v40 += size; //VM整体操作流程序号加上字符串的长度 env_1 = env; //调用reg_method_0函数,将字符串int_3_arg传入reg_method_0函数 napi_call_function(env, this , reg_method_0, 1LL, &int_3_arg, &methodfun_0_ret); //得到返回值reg_method_0函数的返回值 napi_get_value_string_utf8(env, method_1_ret, buf, 128LL, &stringlen1); if ( stringlen1 ) { .... } 1. VM整体操作流程序号加上3 2. 获取bin[i+2]的值作为size 3. 获取bin + v40中的字符串,其实就是bin[i+3] 4. VM整体操作流程序号加上字符串的长度 5. 调用reg_method_0函数,将字符串int_3_arg传入reg_method_0函数 6. 得到返回值reg_method_0函数的返回值 |
bin[i+1]
== 21 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | if ( keyvalue == 2 ) // keyvalue == 2,method_1_ret的返回值被转为bool,传入一个参数 { //获取bin[i+3]的值作为int_3_arg napi_create_int32(env, *(bin + targetidx + 3), &int_3_arg); //转换类型int32-》bool napi_coerce_to_bool(env, int_3_arg, &int_3_arg); //调用reg_method_0(int_3_arg)->返回值methodfun_0_ret napi_call_function(env, this , reg_method_0, 1LL, &int_3_arg, &methodfun_0_ret); //将reg_method_1函数的返回值作为switch_case_key napi_get_value_bool(env, method_1_ret, &method_1_ret_bool); LOBYTE(switch_case_key) = method_1_ret_bool; v40 = targetidx + 4; } 1. 获取bin[i+3]的值作为int_3_arg 2. 转换类型int32-》 bool 3. 调用reg_method_0(int_3_arg) 4. 将reg_method_1函数的返回值作为switch_case_key 注:switch_case_key用来加密 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | def dump_bin( bin ): d = [] pc = 0 while pc < len ( bin ): op = bin [pc] print ( '####################' , pc, op) # 获取函数地址reg_method_0,通过bin[pc]查找 # print('reg_method_0 = func[%d]' % (op)) # 获取函数地址reg_method_1,通过bin[pc] | 0x100 查找 #调用reg_method_1获得返回值 print ( 'method_1_ret = call func[%d]' % (op | 0x100 )) #获取操作类型 type = bin [pc + 1 ] if type = = 0 : print ( 'method_0_ret = call func[%d](%d)' % (op, bin [pc + 3 ])) key = bin [pc + 3 ] pc + = 4 elif type = = 1 : #获取bin中字符串的长度 size = bin [pc + 2 ] s = bin [pc + 3 : pc + 3 + size] print ( 'method_0_ret = call func[%d](%s)' % (op, repr (s))) pc + = 3 + size elif type = = 2 : print ( 'method_0_ret = call func[%d](%d)' % (op, bin [pc + 3 ])) key = bin [pc + 3 ] pc + = 4 else : pc + = 3 assert False d.append((op, key)) return d with open (r '.\bin' , 'rb' ) as file : encrypted_data = file .read() print (dump_bin(encrypted_data)) |
得到执行流程:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | #################### 0 3 method_1_ret = call func[259] method_0_ret = call func[3](1) #################### 4 0 method_1_ret = call func[256] method_0_ret = call func[0](100) #################### 8 4 method_1_ret = call func[260] method_0_ret = call func[4](10) #################### 12 7 method_1_ret = call func[263] method_0_ret = call func[7](0) #################### 16 5 method_1_ret = call func[261] method_0_ret = call func[5](b 'hackers' ) #################### 26 8 method_1_ret = call func[264] method_0_ret = call func[8](1) #################### 30 1 method_1_ret = call func[257] method_0_ret = call func[1](3) #################### 34 6 method_1_ret = call func[262] method_0_ret = call func[6](50) #################### 38 2 method_1_ret = call func[258] method_0_ret = call func[2](2) |
ArkTS层注册的回调函数有很多我就截取了部分:
aboutToAppear() { // 电池插入类型差值判断 testNapi.register(3, (a) => { var t = batteryInfo.pluggedType - a; var f; if (t > 0) f = 1; else if (t == 0) f = 0; else f = -1; return f === 0; }); .... // 直接返回电池插入类型 testNapi.register(259, () => { return batteryInfo.pluggedType; }); }
这里是写在ArkTS层的回调函数代码!
发现这些回调函数的id:3,259;0,256;等等...
这里监测环境异常主要是通过检查电池信息是否和预定的数据一样不一样则判定环境异常:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | method_1_ret = call func[259] // 直接返回电池插入类型 testNapi. register (259, () => { return batteryInfo.pluggedType; }); method_0_ret = call func[3](1) // 电池插入类型差值判断 testNapi. register (3, (a) => { var t = batteryInfo.pluggedType - a; var f; if (t > 0) f = 1; else if (t == 0) f = 0; else f = -1; return f === 0; }); |
再根据so层的代码分析可以知道:
method_0_ret的返回值必须是非0才可以通过环境监测,这里也就是要求:
1 | batteryInfo.pluggedType 的值等于 1 就可以通过环境检查!! |
依次类推也就可以知道如何绕过环境监测了!
知识连接:OpenHarmony4.0源码解析之电源管理子系统 - 文章 OpenHarmony开发者论坛
batteryInfo.batterySOC 256 batteryInfo.chargingStatus 257 batteryInfo.healthStatus 258 batteryInfo.pluggedType 259 batteryInfo.voltage 260 batteryInfo.technology 261 batteryInfo.batteryTemperature 262 batteryInfo.isBatteryPresent 263 batteryInfo.batteryCapacityLevel 264
写个脚本来看看需要的设置的电池数据,来绕过环境异常检测:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | def dump_bin( bin ): d = [] pc = 0 while pc < len ( bin ): op = bin [pc] print ( '------------->' , pc, op) # 获取函数地址reg_method_0,通过bin[pc]查找 # print('reg_method_0 = func[%d]' % (op)) # 获取函数地址reg_method_1,通过bin[pc] | 0x100 查找 #调用reg_method_1获得返回值 print ( 'method_1_ret = call func[%d]' % (op | 0x100 )) if (op | 0x100 ) = = 256 : print ( "batteryInfo.batterySOC:" ,end = "") elif (op | 0x100 ) = = 257 : print ( "batteryInfo.chargingStatus:" ,end = "") elif (op | 0x100 ) = = 258 : print ( "batteryInfo.healthStatus:" ,end = "") elif (op | 0x100 ) = = 259 : print ( "batteryInfo.pluggedType:" ,end = "") elif (op | 0x100 ) = = 260 : print ( "batteryInfo.voltage:" ,end = "") elif (op | 0x100 ) = = 261 : print ( "batteryInfo.technology:" ,end = "") elif (op | 0x100 ) = = 262 : print ( "batteryInfo.batteryTemperature:" ,end = "") elif (op | 0x100 ) = = 263 : print ( "batteryInfo.isBatteryPresent:" ,end = "") elif (op | 0x100 ) = = 264 : print ( "batteryInfo.batteryCapacityLevel:" ,end = "") #获取操作类型 type = bin [pc + 1 ] if type = = 0 : print ( bin [pc + 3 ]) print ( 'method_0_ret = call func[%d](%d)' % (op, bin [pc + 3 ])) key = bin [pc + 3 ] pc + = 4 elif type = = 1 : #获取bin中字符串的长度 size = bin [pc + 2 ] s = bin [pc + 3 : pc + 3 + size] print ( repr (s)) print ( 'method_0_ret = call func[%d](%s)' % (op, repr (s))) pc + = 3 + size elif type = = 2 : print ( bin [pc + 3 ]) print ( 'method_0_ret = call func[%d](%d)' % (op, bin [pc + 3 ])) key = bin [pc + 3 ] pc + = 4 else : pc + = 3 assert False d.append((op, key)) return d with open (r '.\bin' , 'rb' ) as file : encrypted_data = file .read() print (dump_bin(encrypted_data)) |
要求的电池环境,成功绕过:
-------------> 0 3 batteryInfo.pluggedType:1 -------------> 4 0 batteryInfo.batterySOC:100 -------------> 8 4 batteryInfo.voltage:10 -------------> 12 7 batteryInfo.isBatteryPresent:0 -------------> 16 5 batteryInfo.technology:b'hackers' -------------> 26 8 batteryInfo.batteryCapacityLevel:1 -------------> 30 1 batteryInfo.chargingStatus:3 -------------> 34 6 batteryInfo.batteryTemperature:50 -------------> 38 2 batteryInfo.healthStatus:2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | do { if valuekey == 0: switch_case_key... if valuekey == 1: switch_case_key... if valuekey == 2: switch_case_key... .... switch ( bin_i ) { case 0: .... v54 = switch_case_key & 0x3F | (switch_case_key >> 1) & 0x40 | (2 * switch_case_key) & 0x80; .... case 1: ..... case 8: .... } } while ( v40 < bin_len ); |
继续分析发现switch里面的加密和switch_case_key的关系特别大,根据交叉引用可以找到相关逻辑:
bin[i+1]
的值不同导致switch_case_key的值也不同reg_method_1方法在被找到的那一刻就被执行了,返回值是method_1_ret
bin[i+1]
== 01 2 3 4 5 6 7 8 | else if ( !keyvalue ) // keyvalue==0,method_1_ret被转为int32,传入一个参数 { v40 = targetidx + 4; napi_create_int32(env, *(bin + targetidx + 3), &int_3_arg); napi_call_function(env, this , reg_method_0, 1LL, &int_3_arg, &methodfun_0_ret); napi_get_value_int32(env, method_1_ret, &method_1_ret_bool); // 转为int32 LOBYTE(switch_case_key) = method_1_ret_bool; } |
根据前面的ArkTS层函数的调用规则可以知道:
*(bin + targetidx + 3)
1 2 3 4 5 | op = bin [pc] type = bin [pc + 1 ] if type = = 0 : key = bin [pc + 3 ] pc + = 4 |
bin[i+1]
== 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | if ( keyvalue == 1 ) // keyvalue == 1,method_1_ret返回值被转为utf8,传入一个参数 { size = *(bin + targetidx + 2); napi_create_string_utf8(env, bin + v40, size, &int_3_arg); v40 += size; env_1 = env; napi_call_function(env, this , reg_method_0, 1LL, &int_3_arg, &methodfun_0_ret); napi_get_value_string_utf8(env, method_1_ret, buf, 128LL, &stringlen1); if ( stringlen1 ) { if ( stringlen1 < 0x20 ) { idx1 = 0LL; switch_case_key = 0; goto LABEL_56; } idx1 = stringlen1 & 0xFFFFFFFFFFFFFFE0LL; if ( (stringlen1 & 0xFFFFFFFFFFFFFFE0LL) - 32 >= 0x60 ) { .... while ( stringlen1 != idx1 ) LABEL_56: LOBYTE(switch_case_key) = buf[idx1++] ^ switch_case_key; } else { switch_case_key = 0; } } |
bin[i+1]
== 1的值会去检测:batteryInfo.technology:b'hackers'*(bin + targetidx + 2)
是字符串长度1 2 | while ( stringlen1 != idx1 ) LOBYTE(switch_case_key) = buf[idx1++] ^ switch_case_key; |
用python脚本就是:
1 2 3 4 5 6 7 8 | op = bin [pc] type = bin [pc + 1 ] elif type = = 1 : size = bin [pc + 2 ] s = bin [pc + 3 : pc + 3 + size] key = 0 for i in s: key ^ = i pc + = 3 + size |
bin[i+1]
== 21 2 3 4 5 6 7 8 9 | if ( keyvalue == 2 ) // keyvalue == 2,method_1_ret的返回值被转为bool,传入一个参数 { napi_create_int32(env, *(bin + targetidx + 3), &int_3_arg); napi_coerce_to_bool(env, int_3_arg, &int_3_arg); napi_call_function(env, this , reg_method_0, 1LL, &int_3_arg, &methodfun_0_ret); napi_get_value_bool(env, method_1_ret, &method_1_ret_bool); LOBYTE(switch_case_key) = method_1_ret_bool; v40 = targetidx + 4; } |
根据前面的ArkTS层函数的调用规则可以知道:
*(bin + targetidx + 3)
1 2 3 4 5 | op = bin [pc] type = bin [pc + 1 ] if type = = 2 : key = bin [pc + 3 ] pc + = 4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | def dump_bin( bin ): d = [] pc = 0 while pc < len ( bin ): op = bin [pc] type = bin [pc + 1 ] if type = = 2 or type = = 0 : key = bin [pc + 3 ] pc + = 4 elif type = = 1 : size = bin [pc + 2 ] s = bin [pc + 3 : pc + 3 + size] key = 0 for i in s: key ^ = i pc + = 3 + size else : pc + = 3 assert False d.append((op, key)) return d with open (r '.\bin' , 'rb' ) as file : encrypted_data = file .read() print (dump_bin(encrypted_data)) # [(3, 1), (0, 100), (4, 10), (7, 0), (5, 101), (8, 1), (1, 3), (6, 50), (2, 2)] |
第一个值是opcode,第二个值是key
加密流程和密钥;[(3, 1), (0, 100), (4, 10), (7, 0), (5, 101), (8, 1), (1, 3), (6, 50), (2, 2)]
拜读大佬wp,但是奈何大佬的代码跑不起来,而且最终加密后的flag数据对比的位置和加密后的数据也不知道怎么来的,最后无奈放弃QAQ
拜读大佬wp:2024 05.27 jqctf 初赛 wp - LaoGong - 飞书云文档 (feishu.cn)
最后经过大佬的指点终于成功了!!剩下的就是算法学习了!
安装环境:
┌──(kali㉿kali)-[~/tools] └─$ git clone https://github.com/IchildYu/load-elf.git 正克隆到 'load-elf'... remote: Enumerating objects: 40, done. remote: Counting objects: 100% (40/40), done. remote: Compressing objects: 100% (37/37), done. remote: Total 40 (delta 18), reused 0 (delta 0), pack-reused 0 接收对象中: 100% (40/40), 13.93 KiB | 6.97 MiB/s, 完成. 处理 delta 中: 100% (18/18), 完成.
┌──(kali㉿kali)-[~/tools/load-elf] └─$ gcc ./x64_main.c -o lib -g -ldl -masm=intel -shared -fPIC
成功跑出flag,源码在下面:
python:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | def dump_bin( bin ): d = [] pc = 0 while pc < len ( bin ): op = bin [pc] # print('#', pc, op) # print('b = func[%d]()' % (op | 0x100)) type = bin [pc + 1 ] if type = = 2 or type = = 0 : # missing bin[pc + 2] # print('a = func[%d](%d)' % (op, bin[pc + 3])) key = bin [pc + 3 ] pc + = 4 elif type = = 1 : size = bin [pc + 2 ] s = bin [pc + 3 : pc + 3 + size] # print('a = func[%d](%s)' % (op, repr(s))) # print('b = xor(b)') key = 0 for i in s: key ^ = i pc + = 3 + size else : pc + = 3 assert False d.append((op, key)) return d def g(x, n): return (x >> n) & 1 def s(x, n): return (x & 1 ) << n def swapbit(x, m, n): if m = = n: return x return s(g(x, m), n) | s(g(x, n), m) | (x & ~(s( 1 , n) | s( 1 , m))) def swapkeep(x, mask): swapbits = ~mask & 0xff m = swapbits.bit_length() - 1 assert 0 < = m < 8 swapbits ^ = 1 << m n = swapbits.bit_length() - 1 assert 0 < = n < 8 swapbits ^ = 1 << n assert swapbits = = 0 return swapbit(x, m, n) def ror1(x, n): n & = 7 if isinstance (x, int ): x & = 0xff return (x >> n) | (x << ( 8 - n)) & 0xff else : return LShR(x, n) | (x << ( 8 - n)) & 0xff entries = [ 0x2efa , 0x42e9 , 0x3428 , 0x38fd , 0x2522 , 0x480d , 0x4cc6 , 0x3df6 , 0x51df ] bin = open ( './bin' , 'rb' ).read() _seq = dump_bin( bin ) # print(_seq) import ctypes lib = ctypes.cdll.LoadLibrary( './lib' ) # extern void setup(); lib.setup() def encrypt(array, seq): for op, key in seq: for i in range ( 38 ): v = lib.bf_round(key, entries[op], i) type , val0, val1 = v >> 16 , (v >> 8 ) & 0xff , v & 0xff if type = = 0 : assert val0 = = 0 # print(i, 'c ^= 0x%x' % val1) array[i] ^ = val1 elif type = = 1 : # print(i, 'c = ror1(c, %d) ^ 0x%x' % (val0, val1)) array[i] = ror1(array[i], val0) ^ val1 elif type = = 2 : # print(i, 'c = swapkeep(c, 0x%x) ^ 0x%x' % (val0, val1)) array[i] = swapkeep(array[i], val0) ^ val1 else : assert False , type from z3 import * _array = [BitVec( 'x%d' % i, 8 ) for i in range ( 38 )] array = _array[:] encrypt(array, _seq) result = [ 226 , 125 , 77 , 72 , 55 , 231 , 235 , 154 , 118 , 5 , 125 , 135 , 49 , 162 , 160 , 77 , 248 , 159 , 61 , 164 , 56 , 139 , 225 , 229 , 136 , 139 , 89 , 191 , 4 , 222 , 40 , 234 , 126 , 202 , 215 , 252 , 133 , 165 ] # print(len(result)) s = Solver() for i in range ( 38 ): s.add(array[i] = = result[i]) assert s.check() = = sat model = s.model() # print(model) flag = [] for i in _array: flag.append(model[i].as_long()) print (bytes(flag)) # flag{3da8767cfb9424b9bbcc09008e36642d} |
lib的源码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 | #include <stdio.h> #include <dlfcn.h> #include <string.h> #include <assert.h> #include <sys/mman.h> #include <fcntl.h> #include <unistd.h> #include <stdint.h> #include <stdlib.h> #include <stdarg.h> #define ERROR 0 #define WARNING 1 #define INFO 2 #define DEBUG 3 #define VERBOSE 4 const char * LOG_LEVEL_CHARS = "EWIDV" ; const char * LOG_LEVEL_COLORS[] = { "\x1b[31m" , "\x1b[33m" , "\x1b[32m" , "\x1b[0m" , "\x1b[34m" , }; int _log_level = INFO; int _log_color = 1; void set_log_level( int log_level) { if (log_level < 0) log_level = 0; if (log_level > 4) log_level = 4; _log_level = log_level; } void set_log_color( int log_color) { _log_color = log_color; } void Log( int log_level, const char * format, ...) { if (log_level < 0) log_level = 0; if (log_level > 4) log_level = 4; if (log_level > _log_level) return ; if (_log_color) printf ( "%s" , LOG_LEVEL_COLORS[log_level]); printf ( "[%c] " , LOG_LEVEL_CHARS[log_level]); va_list args; va_start (args, format); vprintf (format, args); va_end (args); if (_log_color) printf ( "\x1b[0m" ); } #define LOGE(format, ...) Log(ERROR, format, ##__VA_ARGS__) #define LOGW(format, ...) Log(WARNING, format, ##__VA_ARGS__) #define LOGI(format, ...) Log(INFO, format, ##__VA_ARGS__) #define LOGD(format, ...) Log(DEBUG, format, ##__VA_ARGS__) #define LOGV(format, ...) Log(VERBOSE, format, ##__VA_ARGS__) // default info #define SET_LOGE() set_log_level(ERROR) #define SET_LOGW() set_log_level(WARNING) #define SET_LOGI() set_log_level(INFO) #define SET_LOGD() set_log_level(DEBUG) #define SET_LOGV() set_log_level(VERBOSE) // default on #define SET_LOGCOLOR_OFF() set_log_color(0) #define SET_LOGCOLOR_ON() set_log_color(1) #define R_NONE 0 #define R_COPY 5 #define R_GLOB_DAT 6 #define R_JUMP_SLOT 7 #define R_RELATIVE 8 #define R_IRELATIVE 37 typedef unsigned char uchar; typedef unsigned short ushort; typedef unsigned int uint; typedef unsigned long long ullong; typedef struct { uchar e_ident[16]; ushort e_type; ushort e_machine; uint e_version; size_t e_entry; size_t e_phoff; size_t e_shoff; uint e_flags; ushort e_ehsize; ushort e_phentsize; ushort e_phnum; ushort e_shentsize; ushort e_shnum; ushort e_shtrndx; } elf_header; typedef struct { size_t d_tag; size_t d_un; } elf_dyn; typedef struct { size_t r_offset; size_t r_info; } elf_rel; typedef struct { size_t r_offset; size_t r_info; size_t r_addend; } elf_rela; // elf_sym.st_info #define elf_st_bind(info) ((info) >> 4) #define elf_st_type(info) ((info) & 0xf) typedef struct { uint p_type; uint p_flags; size_t p_offset; size_t p_vaddr; size_t p_paddr; size_t p_filesz; size_t p_memsz; size_t p_align; } elf_program_header; typedef struct { uint st_name; uchar st_info; uchar st_other; ushort shndx; size_t st_value; size_t st_size; } elf_sym; // elf_rel[a].r_info #define elf_r_sym(info) ((info) >> 32) #define elf_r_type(info) ((uint) (info)) int do_reloc( void * base, size_t offset, size_t info, size_t addend, const elf_sym* symtab, const char * strtab) { #define sym (elf_r_sym(info)) #define type (elf_r_type(info)) #define value (symtab[sym].st_value) #define size (symtab[sym].st_size) #define name (strtab + symtab[sym].st_name) switch (type) { case R_NONE: break ; case R_COPY: if (value) { memcpy (( void *) (( size_t ) base + offset), ( const void *) (( size_t ) base + value), size); } else { const void * sym_value = dlsym(( void *) -1, name); // RTLD_DEFAULT if (!sym_value) { LOGW( "failed to resolve symbol `%s'.\n" , name); break ; } memcpy (( void *) (( size_t ) base + offset), sym_value, size); } break ; case R_GLOB_DAT: case R_JUMP_SLOT: if (value) { *( size_t *) (( size_t ) base + offset) = ( size_t ) base + value; } else { const void * sym_value = dlsym(( void *) -1, name); // RTLD_DEFAULT if (!sym_value) { LOGW( "failed to resolve symbol `%s'.\n" , name); break ; } *( size_t *) (( size_t ) base + offset) = ( size_t ) sym_value; } break ; case R_RELATIVE: *( size_t *) (( size_t ) base + offset) = ( size_t ) base + addend; break ; case R_IRELATIVE: *( size_t *) (( size_t ) base + offset) = (( size_t (*)()) (( size_t ) base + addend))(); break ; case 1: // R_X86_64_64 if (value) { *( size_t *) (( size_t ) base + offset) = ( size_t ) base + value + addend; } else { const void * sym_value = dlsym(( void *) -1, name); // RTLD_DEFAULT if (!sym_value) { LOGW( "failed to resolve symbol `%s'.\n" , name); break ; } *( size_t *) (( size_t ) base + offset) = ( size_t ) sym_value + addend; } break ; default : LOGW( "unimplemented reloc type: %d.\n" , type); break ; } #undef sym #undef type #undef value #undef size #undef name return 1; } #define SKIP_LOAD_WITH_DL void * load_with_dl( const char * path) { #ifdef SKIP_LOAD_WITH_DL LOGD( "SKIP_LOAD_WITH_DL defined, load_with_dl returns NULL.\n" ); return NULL; #endif LOGI( "loading %s with dlopen...\n" , path); void * handle = dlopen(path, RTLD_LAZY); if (handle == NULL) { LOGE( "load_with_dl failed: %s.\n" , dlerror()); return NULL; } void * base = *( void **) handle; LOGI( "done, loaded at %p.\n" , base); return base; } int check_header(elf_header* header) { if (*(uint*) header->e_ident != 0x464c457f) { LOGE( "elf magic header not detected.\n" ); return 0; } if (header->e_ident[4] != ( sizeof ( void *) / 4)) { // ei_class, 1: ELFCLASS32, 2: ELFCLASS64 LOGE( "elf class mismatch.\n" ); return 0; } if (header->e_ident[5] != 1) { LOGE( "LSB expected.\n" ); return 0; } if (header->e_type != 2 && header->e_type != 3) { LOGE( "Dynamic library or executable expected.\n" ); return 0; } if (header->e_ehsize != sizeof (elf_header)) { LOGE( "Unexpected header size.\n" ); return 0; } return 1; } const elf_dyn* find_dyn_entry( const elf_dyn* dyn, int type) { for (; dyn->d_tag != 0; dyn++) { // DT_NULL if (dyn->d_tag == type) return dyn; } return NULL; } int do_rel( void * base, const elf_rel* rel, int count, const elf_sym* symtab, const char * strtab) { for ( int i = 0; i < count; i++) { if (!do_reloc(base, rel[i].r_offset, rel[i].r_info, *( size_t *) (( size_t ) base + rel[i].r_offset), symtab, strtab)) return 0; } return 1; } int do_rela( void * base, const elf_rela* rela, int count, const elf_sym* symtab, const char * strtab) { for ( int i = 0; i < count; i++) { if (!do_reloc(base, rela[i].r_offset, rela[i].r_info, rela[i].r_addend, symtab, strtab)) return 0; } return 1; } int check_and_do_rel( void * base, const elf_dyn* dyn, const elf_rel* rel, const elf_sym* symtab, const char * strtab) { if (find_dyn_entry(dyn, 0x13)->d_un != sizeof (elf_rel)) { // DT_RELENT LOGE( "unexpected rel table entry size.\n" ); return 0; } LOGD( "do rel.\n" ); int rel_count = find_dyn_entry(dyn, 0x12)->d_un / sizeof (elf_rel); // DT_RELSZ if (!do_rel(base, rel, rel_count, symtab, strtab)) return 0; return 1; } int check_and_do_rela( void * base, const elf_dyn* dyn, const elf_rela* rela, const elf_sym* symtab, const char * strtab) { if (find_dyn_entry(dyn, 0x9)->d_un != sizeof (elf_rela)) { // DT_RELAENT LOGE( "unexpected rela table entry size.\n" ); return 0; } LOGD( "do rela.\n" ); int rela_count = find_dyn_entry(dyn, 0x8)->d_un / sizeof (elf_rela); // DT_RELASZ if (!do_rela(base, rela, rela_count, symtab, strtab)) return 0; return 1; } int load_dynamic( void * base, const elf_dyn* dyn) { const elf_dyn* res = find_dyn_entry(dyn, 5); // DT_STRTAB if (res == NULL) { LOGE( "string table not found.\n" ); return 0; } const char * strtab = ( const char *) (( size_t ) base + res->d_un); const elf_sym* symtab = NULL; res = find_dyn_entry(dyn, 0x6); // DT_SYMTAB if (res != NULL) { symtab = ( const elf_sym*) (( size_t ) base + res->d_un); if (find_dyn_entry(dyn, 0xB)->d_un != sizeof (elf_sym)) { // DT_SYMENT LOGE( "unexpected symbol table entry size.\n" ); return 0; } } for ( const elf_dyn* it = dyn; it->d_tag != 0; it++) { if (it->d_tag != 1) continue ; // DT_NEEDED: name of needed library LOGD( "loading needed library `%s'.\n" , strtab + it->d_un); if (!dlopen(strtab + it->d_un, RTLD_NOW | RTLD_GLOBAL)) LOGW( "failed to load needed library `%s': %s.\n" , strtab + it->d_un, dlerror()); } int rel_done = 0; for ( const elf_dyn* it = dyn; it->d_tag != 0; it++) { // DT_NULL switch (it->d_tag) { case 7: // DT_RELA if (rel_done) break ; if (!check_and_do_rela(base, dyn, ( const elf_rela*) (( size_t ) base + it->d_un), symtab, strtab)) return 0; rel_done = 1; break ; case 0x11: // DT_REL if (rel_done) break ; if (!check_and_do_rel(base, dyn, ( const elf_rel*) (( size_t ) base + it->d_un), symtab, strtab)) return 0; rel_done = 1; break ; case 0x17: // DT_JMPREL ; size_t plt_rel_size = find_dyn_entry(dyn, 0x2)->d_un; // DT_PLTRELSZ int plt_rel = find_dyn_entry(dyn, 0x14)->d_un; // DT_PLTREL if (plt_rel == 0x11) { // DT_REL if (!rel_done) { res = find_dyn_entry(dyn, 0x11); // DT_REL if (res != NULL) { if (!check_and_do_rel(base, dyn, ( const elf_rel*) (( size_t ) base + res->d_un), symtab, strtab)) return 0; rel_done = 1; } } plt_rel_size /= sizeof (elf_rel); LOGD( "do jmprel with rel.\n" ); if (!do_rel(base, (elf_rel*) (( size_t ) base + it->d_un), plt_rel_size, symtab, strtab)) return 0; } else if (plt_rel == 7) { // DT_RELA if (!rel_done) { res = find_dyn_entry(dyn, 7); // DT_RELA if (res != NULL) { if (!check_and_do_rela(base, dyn, ( const elf_rela*) (( size_t ) base + res->d_un), symtab, strtab)) return 0; rel_done = 1; } } plt_rel_size /= sizeof (elf_rela); LOGD( "do jmprel with rela.\n" ); if (!do_rela(base, (elf_rela*) (( size_t ) base + it->d_un), plt_rel_size, symtab, strtab)) return 0; } else { LOGE( "unexpected plt rel type: %d.\n" , plt_rel); return 0; } break ; } } res = find_dyn_entry(dyn, 0xC); // DT_INIT if (res != NULL) { void (*init)() = ( void (*)()) (( size_t ) base + res->d_un); LOGI( "init proc detected: %p.\n" , init); int choice = 'y' ; do { LOGI( "Execute init proc? [(y)es/(n)o] " ); choice = getchar (); if (choice != '\n' ) while ( getchar () != '\n' ) ; if (choice >= 'A' && choice <= 'Z' ) choice += 0x20; } while (choice != 'y' && choice != 'n' ); if (choice == 'y' ) init(); } res = find_dyn_entry(dyn, 0x19); // DT_INIT_ARRAY if (res != NULL) { void (**init_array)() = ( void (**)()) (( size_t ) base + res->d_un); int count = find_dyn_entry(dyn, 0x1B)->d_un / sizeof ( size_t ); // DT_INIT_ARRAYSZ while (*init_array == NULL && count) { init_array++; count--; } if (count) { LOGI( "init array detected:\n" ); int choice = '?' ; for ( int i = 0; i < count; i++) { if (!init_array[i]) continue ; while (choice != 'y' && choice != 'n' && choice != 'a' && choice != 'o' ) { LOGI( "\texecute function %p? [(y)es/(n)o/(a)ll items left/n(o)ne items left] " , init_array[i]); choice = getchar (); if (choice != '\n' ) while ( getchar () != '\n' ) ; // skip line if (choice >= 'A' && choice <= 'Z' ) choice += 0x20; // convert to lower case } if ((uchar) (choice - 'n' ) > 2) { // 'y' or 'a' LOGI( "\texecuting function at %p...\n" , init_array[i]); init_array[i](); if (choice == 'y' ) choice = '?' ; } else if (choice == 'n' ) choice = '?' ; } } } res = find_dyn_entry(dyn, 0xD); // DT_FINI if (res != NULL) { void (*fini)() = ( void (*)()) (( size_t ) base + res->d_un); LOGI( "fini proc detected: %p.\n" , fini); } res = find_dyn_entry(dyn, 0x1A); // DT_FINI_ARRAY if (res != NULL) { void (**fini_array)() = ( void (**)()) (( size_t ) base + res->d_un); int count = find_dyn_entry(dyn, 0x1C)->d_un / sizeof ( size_t ); // DT_FINI_ARRAYSZ while (*fini_array == NULL && count) { fini_array++; count--; } if (count) { LOGI( "fini array detected:\n" ); for ( int i = 0; i < count; i++) { if (fini_array[i]) { LOGI( "\t%p\n" , fini_array[i]); } } } } LOGI( "load_dynamic done.\n" ); return 1; } #define MMAP_LOAD_BASE ((void*) 0xC0000000) void * load_with_mmap( const char * path) { LOGI( "loading %s with mmap...\n" , path); int fd = open(path, O_RDONLY); LOGV( "open(path, O_RDONLY) returns %d\n" , fd); elf_header header; LOGV( "reading elf header from file...\n" ); if (read(fd, &header, sizeof (header)) != sizeof (header)) { LOGE( "read header error\n" ); close(fd); return NULL; } LOGV( "checking elf header...\n" ); if (!check_header(&header)) { close(fd); return NULL; } elf_program_header pheader; elf_dyn* dyn = NULL; int e_phentsize = header.e_phentsize; int e_phnum = header.e_phnum; if (e_phentsize != sizeof (pheader)) { LOGE( "unexpected program header size.\n" ); close(fd); return NULL; } LOGV( "determine LOAD_BASE...\n" ); void * base = MMAP_LOAD_BASE; while (base != mmap(base, 0x1000, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)) { base = ( void *) (( size_t ) base + 0x1000000); } munmap(base, 0x1000); LOGD( "trying loading at %p\n" , base); lseek(fd, header.e_phoff, SEEK_SET); for ( int i = 0; i < e_phnum; i++) { LOGV( "processing phdr %d...\n" , i); if (read(fd, &pheader, sizeof (pheader)) != sizeof (pheader)) { LOGE( "read pheader error\n" ); close(fd); return NULL; } if (pheader.p_type != 1 || pheader.p_memsz == 0) { // not PT_LOAD or nothing to load if (pheader.p_type == 2) { // DYNAMIC if (dyn != NULL) { LOGE( "duplicated DYNAMIC PHT detected.\n" ); close(fd); return NULL; } else { dyn = (elf_dyn*) (( size_t ) base + pheader.p_vaddr); } } continue ; } void * addr = ( void *) ((( size_t ) base + pheader.p_vaddr) & ~0xfff); int offset = pheader.p_vaddr & 0xfff; size_t size = (offset + pheader.p_filesz + 0xfff) & ~0xfff; if (addr != mmap(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, pheader.p_offset - offset)) { // if (addr != mmap(addr, pheader.p_memsz + offset, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, pheader.p_offset - offset)) { // if ((uchar*) addr != (uchar*) base + pheader.p_vaddr) { LOGE( "failed to mmap 0x%lx to 0x%lx.\n" , pheader.p_offset, pheader.p_vaddr + ( size_t ) base); close(fd); return NULL; } if (offset) { memset (addr, 0, offset); } if (pheader.p_memsz != pheader.p_filesz) { if (pheader.p_memsz < pheader.p_filesz) { LOGE( "unexpected: filesz bigger than memsz.\n" ); close(fd); return NULL; } if (pheader.p_memsz + offset > size) { LOGV( "mmap extra pages in memory\n" ); addr = ( void *) (( size_t ) addr + size); if (addr != mmap(addr, pheader.p_memsz + offset - size, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_ANON | MAP_SHARED, -1, 0)) { LOGE( "failed to mmap 0x%lx to 0x%lx.\n" , pheader.p_offset, pheader.p_vaddr + ( size_t ) base); close(fd); return NULL; } } } { LOGV( "testing memory...\n" ); char c = *(unsigned char *) (pheader.p_vaddr + ( size_t ) base); c = *(unsigned char *) (pheader.p_vaddr + ( size_t ) base + pheader.p_filesz - 1); c = *(unsigned char *) (pheader.p_vaddr + ( size_t ) base + pheader.p_memsz - 1); } LOGD( "mmaped 0x%lx to 0x%lx, filesz 0x%lx, memsz 0x%lx\n" , pheader.p_offset, pheader.p_vaddr + ( size_t ) base, pheader.p_filesz, pheader.p_memsz); } LOGI( "done, loaded at %p\n" , base); close(fd); if (!dyn) return base; LOGI( "DYNAMIC detected, loading...\n" ); if (!load_dynamic(base, dyn)) return NULL; return base; } const elf_dyn* get_dyn( void * base) { elf_header* header = (elf_header*) base; int e_phnum = header->e_phnum; elf_program_header* pheader = (elf_program_header*) (( size_t ) base + header->e_phoff); for ( int i = 0; i < e_phnum; i++, pheader++) { if (pheader->p_type == 2) { return (elf_dyn*) (( size_t ) base + pheader->p_vaddr); } } } void * get_symbol_by_name( void * base, const char * symbol) { const elf_dyn* dyn = get_dyn(base); const char * strtab = ( const char *) (find_dyn_entry(dyn, 5)->d_un); // DT_STRTAB if (strtab < ( const char *) base) strtab = ( const char *) strtab + ( size_t ) base; size_t strsz = find_dyn_entry(dyn, 0xa)->d_un; // DT_STRSZ const elf_sym* symtab = ( const elf_sym*) (find_dyn_entry(dyn, 6)->d_un); // DT_SYMTAB if (( const char *) symtab < ( const char *) base) symtab = ( const elf_sym*) (( const char *) symtab + ( size_t ) base); for (; ; symtab++) { if (symtab->st_name == 0) continue ; if (symtab->st_name >= strsz) { LOGE( "failed to resolve symbol `%s' from library (%p): not found.\n" , symbol, base); return NULL; } if ( strcmp (strtab + symtab->st_name, symbol) == 0) { if (symtab->st_value == 0) { LOGE( "failed to resolve symbol `%s' from library (%p): value is NULL.\n" , symbol, base); return NULL; } if (elf_st_type(symtab->st_info) != 10) { // STT_GNU_IFUNC return ( void *) (( size_t ) base + symtab->st_value); } return (( void * (*)()) (( size_t ) base + symtab->st_value))(); } } } void * get_symbol_by_offset( void * base, size_t offset) { return ( void *) (( size_t ) base + offset); } void * load_elf( const char * elf_path) { void * base = load_with_dl(elf_path); if (base == NULL) { base = load_with_mmap(elf_path); } //assert(base != NULL && *(unsigned int*) base == 0x464c457f); return base; } // gcc ./x64_main.c -o main -g -ldl __asm__( "__round:\n" "sub rsp, 0x10\n" "mov [rsp+0x8], rdi\n" "mov r12, rsi\n" "call rdx\n" "add rsp, 0x10\n" "ret\n" ); void __round(unsigned char * array, int key, void * entry); extern int bf_round( int key, int offset, int index); extern void setup(); extern void one_round(unsigned char * array, int key, int offset); static char * base; void setup() { // SET_LOGE(); const char * path = "./libentry.so" ; base = load_elf(path); *(base + 0x2a07) = 0xc3; // ret } void one_round(unsigned char * array, int key, int offset) { if (base == NULL) setup(); __round(array, key, base + offset); } unsigned char g(unsigned char x, unsigned char n) { return (x >> n) & 1; } unsigned char s(unsigned char x, unsigned char n) { return (x & 1) << n; } unsigned char swapbit(unsigned char x, unsigned char m, unsigned char n) { if (m == n) return x; return s(g(x, m), n) | s(g(x, n), m) | (x & ~(s(1, n) | s(1, m))); } unsigned char bit_length(unsigned char x) { if (x == 0) return 0; for ( int i = 8; i > 0; i--) { if (x & (1 << (i - 1))) return i; } } unsigned char swapkeep(unsigned char x, unsigned char mask) { unsigned char swapbits = ~mask & 0xff; unsigned char m = bit_length(swapbits) - 1; assert (0 <= m && m < 7); swapbits ^= 1 << m; unsigned char n = bit_length(swapbits) - 1; assert (0 <= n && n < 7); swapbits ^= 1 << n; assert (swapbits == 0); return swapbit(x, m, n); } unsigned char ror1(unsigned char x, unsigned char n) { n &= 7; x &= 0xff; return (x >> n) | (x << (8 - n)) & 0xff; } unsigned char rol1(unsigned char x, unsigned char n) { return ror1(x, 8 - n); } #define XOR 0 // c ^ val0 ^ val1 #define ROT 1 // ror1(c, val0) ^ val1 #define SWP 2 // swapkeep(c, val0) ^ val1 #define MAKE_RET_VAL(type, val0, val1) (((type) << 16) | ((val0) << 8) | (val1)) int bf_round( int key, int offset, int index) { if (base == NULL) setup(); unsigned char array[38]; array[index] = 0; __round(array, key, base + offset); unsigned char val1 = array[index]; int flag = 0; // test xor for ( int i = 0; i < 7; i++) { array[index] = 1 << i; __round(array, key, base + offset); array[index] ^= val1; if (array[index] != (1 << i)) { flag = 1; break ; } } if (flag == 0) { // XOR return MAKE_RET_VAL(XOR, 0, val1); } // test rol1 array[index] = 1; __round(array, key, base + offset); array[index] ^= val1; unsigned char val0 = bit_length(array[index]); assert (val0 != 0); val0--; if (val0 != 0) { assert (array[index] == (1 << val0)); for ( int i = 1; i < 7; i++) { array[index] = 1 << i; __round(array, key, base + offset); array[index] ^= val1; if (array[index] != (1 << ((i + val0) % 8))) { flag = 0; break ; } } if (flag == 1) { return MAKE_RET_VAL(ROT, 8 - val0, val1); } } // swapkeep for ( int i = 0; i < 7; i++) { array[index] = 1 << i; __round(array, key, base + offset); array[index] ^= val1; if (array[index] != (1 << i)) { assert (bit_length(array[index])); assert (array[index] == (1 << (bit_length(array[index]) - 1))); val0 = ~((1 << i) | array[index]); return MAKE_RET_VAL(SWP, val0, val1); } } assert (0); } // gcc ./x64_main.c -o lib -g -ldl -masm=intel -shared int main() { { const char * path = "/lib/x86_64-linux-gnu/libm.so.6" ; void * base = load_elf(path); double (* pow )( double , double ) = get_symbol_by_name(base, "pow" ); double a = 3.14159; double b = a; printf ( "%g ** %g == %g\n" , a, b, pow (a, b)); } /**/ const char * path = "/lib/x86_64-linux-gnu/libc++.so.1" ; void * base = load_elf(path); void * std_cout = get_symbol_by_name(base, "_ZNSt3__14coutE" ); // offset may be different // std::ostream::operator<<(int) void * (*print_int)( void *, int ) = get_symbol_by_offset(base, 0x5e380); // std::ostream::put(char) void * (*print_char)( void *, char ) = get_symbol_by_offset(base, 0x5f510); print_char(print_int(std_cout, 114514), '\n' ); /**/ puts ( "done." ); return 0; } |
最终报错:
解决方案:
arm架构下的伪代码可以发现数据对比!
发现一个ida小技巧:
点击Collapse declarations可以把超长的变量声明缩减成一行!
更多【HarmonyOS-京麒CTF2024-HarmonyOS移动端Native层逆向】相关视频教程:www.yxfzedu.com